Skip to main content

6.5 DESIGN OF TURBINES

For rocket engine applications, impulse turbines are preferred, for their simplicity and light weight. Our discussion will be confined to these turbines only. Figure 6-55 shows the general arrangement of a typical single-stage tworotor velocity-compounded impulse turbine.

General Design Procedure

The following steps are essential in the design of a rocket engine impulse turbine:

  1. The first item of importance is the selection of the proper type. A single-stage singlerotor turbine (fig. 6-8) is used if the required turbine power is low, since in this case the efficiency of the turbine has less effect on overall engine systems performance. When the avail- able energy of the turbine working fluid and thus the gas spouting velocity C0C_{0} is relatively low, a higher turbine velocity ratio U/C0U / C_{0} may be achieved with a moderate turbine rotor blade speed UU. As shown in figure 6-27, this suggests the use of a relatively simple single-stage single-rotor impulse turbine. We have selected this type for the A-2 stage oxidizer turbopump, at the same time taking advantage of its overall simplicity.

In most direct-drive turbopump configurations, such as the A-1 stage engine turbopump (fig. 6-63), where turbine rotating speed NN and consequently turbine velocity ratio U/C0U / C_{0} tends to be lower than ideal, a single-stage two-rotor velocity-compounded impulse turbine (figs. 6-9 and 6-55) is selected for best results. Figure 6-27 indicates that the optimum efficiency of a velocity-compounded turbine can be achieved at a relatively low U/C0U / C_{0} value.

On the other hand, if a reduction gear train is provided between pumps and turbine, such as in the turbopump shown in figure 6-14, the turbine can be operated at a much higher rotating speed (over 25000 rpm ). A higher value of U/C0U / C_{0} can be achieved with reasonable turbine wheel size. Then a higher performance, two-stage, two-rotor, pressure-compounded impulse turbine (fig. 6-10) may be used. 2. After the type of impulse turbine has been selected, the next step is the determination of the turbine rotor size. Once the characteristics of the turbine working-fluid (i.e., inlet temperature T0T_{0}, specific heat ratio γ\gamma, etc.), the turbine pressure ratio RtR_{t}, and the pump or turbine rotative speed NN have been set forth, a larger diameter for the turbine rotor tends to result in a higher velocity ratio U/C0U / C_{0}, or higher efficiency. However, it also results in higher assembly weight, larger envelope, and higher working stresses. Thus, the final selection of the turbine rotor size, and consequently the U/C0U / C_{0} ratio, is often a design compromise. 3. The required power output from the turbine shaft must be equal to the net input to the propellant pumps, plus the mechanical losses in the gear train (if any), plus the net power required for auxiliary drives. The required flow rate of the turbine working fluid can then be calculated by equation (6-19) after required turbine power, available energy of the working fluid (eq. 6-18), and overall turbine efficiency (estimated from

Figure 6-55.-Typical single-stage, two-rotor velocity compounded impulse turbine.

figure 6-27 for a given U/C0U / C_{0} ratio and turbine type), have been established. 4. Now the dimensions of the stationary nozzles, as well as those of the rotor blades, can be calculated based on the characteristics and the flow rate of the turbine working fluid.

Design of Turbine Nozzles

The nozzles of most rocket engine turbines are basically similar to those of rocket thrust chambers. They are of the conventional converging-diverging De Laval type. The main function of the nozzles of an impulse-type turbine is to convert efficiently the major portion of available energy of the working fluid into kinetic energy or high gas spouting velocity. The gasflow processes in the thrust chamber nozzles are directly applicable to turbine nozzles. However, the gas flow in an actual nozzle deviates from ideal conditions because of fluid viscosity, friction, boundary layer effects, etc. In addition, the energy consumed by friction forces and flow turbulence will cause an increase in the temperature of the gases flowing through a nozzle, above that of an isentropic process. This effect is known as reheat. As a result of the above effects, the actual gas spouting velocity at the turbine nozzle exit tends to be less than the ideal velocity calculated for isentropic expansion (from stagnation state at the nozzle inlet to the static pressure at the rotor blade inlet). Furthermore, the effective flow area of a nozzle is usually less than the actual one, because of circulatory flow and boundary layer effects. The following correlations are established for the design calculations of turbine nozzles:

Nozzle velocity coefficient knk_{n}

Actual gas spouting velocity at the nozzle exit, ft/sec == Ideal gas velocity calculated for isentropic expansion from stagnation state at the nozzle inlet to static pressure at the rotor blade inlet, ft/sec

=C1C0\begin{equation*} =\frac{C_{1}}{C_{0}} \tag{6-118} \end{equation*}

Nozzle efficiency ηn\eta_{n}

= Actual gas kinetic energy at the nozzle exit  Ideal gas kinetic energy (isentropic =\frac{\text { Actual gas kinetic energy at the nozzle exit }}{\text { Ideal gas kinetic energy (isentropic }}

Nozzle throat area coefficient ϵnt\epsilon_{\mathrm{nt}}

= Effective area of the nozzle throat  Actual area \begin{equation*} =\frac{\text { Effective area of the nozzle throat }}{\text { Actual area }} \tag{6-120} \end{equation*}

Actual gas spouting velocity at the nozzle exit, ft/sec\mathrm{ft} / \mathrm{sec} :

C1=knC0=kn2gJCpT0[1(p1p0)γ1γ]=kn2gJΔH01(6-121)\begin{array}{r} C_{1}=k_{n} C_{0}=k_{n} \sqrt{2 g J C_{p} T_{0}\left[1-\left(\frac{p_{1}}{p_{0}}\right)^{\frac{\gamma-1}{\gamma}}\right]} \\ =k_{n} \sqrt{2 g J \Delta H_{0-1}} \tag{6-121} \end{array}

Amount of nozzle reheat:

qnr=(1kn2)C12kn22gJ=(1ηn)C12ηn2gJ\begin{equation*} q_{\mathrm{nr}}=\frac{\left(1-k_{n}^{2}\right) C_{1}^{2}}{k_{n}^{2} 2 g J}=\frac{\left(1-\eta_{n}\right) C_{1}^{2}}{\eta_{n} 2 g J} \tag{6-122} \end{equation*}

Required total nozzle throat area, in 2{ }^{2} :

Ant=w˙tϵntp0gγ[2γ+1]γ+1γ1RT0\begin{equation*} A_{\mathrm{nt}}=\frac{\dot{w}_{t}}{\epsilon_{\mathrm{nt}} p_{0} \sqrt{\frac{g \gamma\left[\frac{2}{\gamma+1}\right]^{\frac{\gamma+1}{\gamma-1}}}{R T_{0}}}} \tag{6-123} \end{equation*}

where

Cp= turbine gas (working fluid) specific  heat at constant pressure, Btu/lb-  deg F\begin{array}{ll} C_{p} & =\text { turbine gas (working fluid) specific } \\ & \text { heat at constant pressure, Btu/lb- } \\ & \text { deg } \mathrm{F} \end{array}

ΔH01=\Delta H_{0-1}{ }^{\prime \prime}= isentropic enthalpy drop of the gases flowing through the nozzles, due to expansion, Btu/lb\mathrm{Btu} / \mathrm{lb} The performance of a turbine nozzle, as expressed by its efficiency or velocity coefficient, is affected by a number of design factors, such as (1) Exit velocity of the gas flow (2) Properties of the turbine gases (3) Angles and curvatures at nozzle inlet and exit (4) Radial height and width at the throat (5) Pitch or spacing, and number of nozzles

Design values for the efficiency and velocity coefficients of a given turbine nozzle may be determined experimentally, or estimated from past designs. Design values of nozzle efficiency ηn\eta_{n} range from 0.80 to 0.96 . Design values of nozzle velocity coefficient knk_{n} vary from 0.89 to 0.98 . The nozzle throat area coefficient ϵnt\epsilon_{n t} generally will increase with nozzle radial height, with design values ranging from 0.95 to 0.99.

The cross-sectional shape (fig. 6-56) of rocket turbine nozzles is square, or, more frequently, rectangular. They are closely spaced on a circular arc extending over a part of (partial admission), or all (full admission), the circumference. Most high-power turbines use full admission for better performance.

While the gases are passing through a nozzle and expanding, the direction of flow is changing from an approximately axial direction to one forming the angle α1\alpha_{1} (fig. 6-56) with the plane of rotation, at the nozzle exit. Thus the turning angle is 90a190^{\circ}-a_{1}. The angle θΩ\theta_{\Omega} of the nozzle centerline at the exit usually is the result of a design compromise. Theoretically, better efficiency is obtained through the use of a smaller nozzle exit angle, since the rotor blading work is larger and the absolute flow velocity at the rotor blade exit is smaller. However, a smaller nozzle exit angle means a larger angle of flow deflection within the nozzle, which causes higher friction losses. Design values of θn\theta_{n} range from 1515^{\circ} to 3030^{\circ}. The actual effective discharge angle a1a_{1} of the gas jet leaving the nozzle tends to be greater than θn\theta_{n}, because of the unsymmetrical nozzle shape at the exit.

A sufficiently large nozzle passage aspect ratio, hnt/bnth_{\mathrm{n} t} / b_{\mathrm{n} t}, is desirable for better nozzle

Figure 6-56.-Nozzles, rotor blades, and velocity diagrams of a typical single-stage impulse turbine.

efficiency. For a given nozzle height, an increase in aspect ratio can be secured by decreasing the nozzle pitch, PnP_{n}. However, a small pitch, and consequently a large number of nozzles, znz_{n}, with attendant increase in wall surface, tends to increase friction losses. The determination of nozzle pitch thus also requires a design compromise. The following correlations are established for the calculation of nozzle flow areas:

Total nozzle throat area, in2\mathrm{in}^{2} :

Ant=znbnthnt\begin{equation*} A_{n t}=z_{n} b_{n t} h_{n t} \tag{6-124} \end{equation*}

Total nozzle exit area, in 2{ }^{2} :

Ane=144w˙tρ1C1ϵne=znbnehne=znhne(Pnsinθntn)\begin{align*} A_{\mathrm{ne}}=\frac{144 \dot{w}_{t}}{\rho_{1} C_{1} \epsilon_{\mathrm{ne}}} & =z_{n} b_{\mathrm{ne}} h_{\mathrm{ne}} \\ & =z_{n} h_{\mathrm{ne}}\left(P_{n} \sin \theta_{n}-t_{n}\right) \tag{6-125} \end{align*}

Pitch or nozzle spacing:

Pn=πdmzn\begin{equation*} P_{n}=\pi \frac{d_{m}}{z_{n}} \tag{6-126} \end{equation*}

where

w˙t= turbine gas mass flow rate, lb/secρ1= density of the gases at nozzle exit, lb/ft3C1= gas spouting velocity at nozzle exit, ft/secϵne= nozzle exit area coefficient hnt= radial height at nozzle throat, in hne= radial height at nozzle exit, in bnt= width normal to flow at nozzle throat, in bne= width normal to flow at nozzle exit, in zn= number of nozzles θn= angle between nozzle exit centerline and  plane of rotation, deg tn= thickness of nozzle partition at exit, in dm= mean diameter of nozzles and rotor blades,  in \begin{aligned} \dot{w}_{t}= & \text { turbine gas mass flow rate, } \mathrm{lb} / \mathrm{sec} \\ \rho_{1}= & \text { density of the gases at nozzle exit, } \mathrm{lb} / \mathrm{ft}^{3} \\ C_{1}= & \text { gas spouting velocity at nozzle exit, } \\ & \quad \mathrm{ft} / \mathrm{sec} \\ \epsilon_{\mathrm{ne}}= & \text { nozzle exit area coefficient } \\ h_{\mathrm{nt}}= & \text { radial height at nozzle throat, in } \\ h_{\mathrm{ne}}= & \text { radial height at nozzle exit, in } \\ b_{\mathrm{nt}}= & \text { width normal to flow at nozzle throat, in } \\ b_{\mathrm{ne}}= & \text { width normal to flow at nozzle exit, in } \\ z_{n}= & \text { number of nozzles } \\ \theta_{n}= & \text { angle between nozzle exit centerline and } \\ & \quad \text { plane of rotation, deg } \\ t_{n}= & \text { thickness of nozzle partition at exit, in } \\ d_{m}= & \begin{array}{r} \text { mean diameter of nozzles and rotor blades, } \\ \text { in } \end{array} \end{aligned}

Turbine nozzle block and inlet gas manifold assembly can be made of, for instance, welded sections of forged Hastelloy C. However, the airfoil surfaces should be blended smoothly between the defined contour and the sections.

Design of Impulse Turbine Rotor Blades

The function of the rotor blades in an impulse turbine (figs. 6-55 and 6-56) is to transform a maximum of the kinetic energy of the gases ejected from the nozzles into useful work. Theoretically, there should be no change of gas pressure, temperature, or enthalpy in the rotor blades. In actual operation however, some gas expansion, i.e., reaction, usually occurs. Furthermore, the actual gas flow through the rotor blades deviates from ideal flow conditions because of friction, eddy currents, boundary layers, and reheating.

The velocity vector diagram shown in figure 6-56 describes graphically the flow conditions at the rotor blades of a single-stage, single-rotor turbine, based on the mean diameter dmd_{m}. The gases enter the rotor blades with an absolute velocity C1C_{1}, and at an angle a1a_{1} with the plane of rotation. The tangential or peripheral speed of the rotor blades at the mean diameter is U.V1U . V_{1} and V2V_{2}, the relative velocities at the blade inlet and outlet, differ, i.e., V1>V2V_{1}>V_{2}, due to friction losses. Ideally, the gas should leave the blades at very low absolute velocity C2C_{2} and in a direction close to axial for optimum energy conversion in the blades. The forces generated at the rotor blades are a function of the change of momentum of the flowing gases. The following correlations may be established for design calculations of the rotor blades of a single-stage, single-rotor turbine.

Tangential force acting on the blades ( lb/lb\mathrm{lb} / \mathrm{lb} of gas flow/sec):

Ft=1g(C1cosa1+C2cosa2)=1g(V1cosβ1+V2cosβ2)\begin{align*} F_{t}=\frac{1}{g}\left(C_{1} \cos a_{1}+C_{2} \cos a_{2}\right) & \\ & =\frac{1}{g}\left(V_{1} \cos \beta_{1}+V_{2} \cos \beta_{2}\right) \tag{6-127} \end{align*}

Work transferred to the blades ( ftlb/lb\mathrm{ft}-\mathrm{lb} / \mathrm{lb} of gas flow/sec):

Eb=Ug(C1cosα1+C2cosα2)=Ug(V1cosβ1+V2cosβ2)U=πdmN720\begin{gather*} E_{b}=\frac{U}{g}\left(C_{1} \cos \alpha_{1}+C_{2} \cos \alpha_{2}\right) \\ =\frac{U}{g}\left(V_{1} \cos \beta_{1}+V_{2} \cos \beta_{2}\right) \tag{6-128}\\ U=\frac{\pi d_{m} N}{720} \tag{6-129} \end{gather*}

For subsequent calculations, the following relation will be useful:

tanβ1=C1sina1C1cosa1U\begin{equation*} \tan \beta_{1}=\frac{C_{1} \sin a_{1}}{C_{1} \cos a_{1}-U} \tag{6-130} \end{equation*}

Axial thrust at blades, lb/lb\mathrm{lb} / \mathrm{lb} of gas flow/sec

Fa=C1sina1V2sinβ2g\begin{equation*} F_{a}=\frac{C_{1} \sin a_{1}-V_{2} \sin \beta_{2}}{g} \tag{6-131} \end{equation*}

Blade velocity coefficient:

kb=V2V1\begin{equation*} k_{b}=\frac{V_{2}}{V_{1}} \tag{6-132} \end{equation*}

Blade efficiency:

ηb= Work transferred to blades  Kinetic energy input =EbC122g\begin{equation*} \eta_{b}=\frac{\text { Work transferred to blades }}{\text { Kinetic energy input }}=\frac{E_{b}}{\frac{C_{1}{ }^{2}}{2 g}} \tag{6-133} \end{equation*}

Ideally, ηb\eta_{b} is a maximum for a single-rotor impulse turbine, when the turbine velocity ratio:

UC1=cosa12\frac{U}{C_{1}}=\frac{\cos a_{1}}{2}

i.e., when U=12C1tU=\frac{1}{2} C_{1 t} where C1tC_{1 t} is the tangential component of C1C_{1}.

 Max. ideal ηb=cos2α12(1+kbcosβ2cosβ1)(6134)\text { Max. ideal } \eta_{b}=\frac{\cos ^{2} \alpha_{1}}{2}\left(1+k_{b} \frac{\cos \beta_{2}}{\cos \beta_{1}}\right)(6-134)

If there is some reaction or expansion of the gas flowing through the blades, the relative gas flow velocity at the rotor blade outlet can be calculated as

V2=kb2V12+2gJηnΔH12\begin{equation*} V_{2}=\sqrt{k_{b}^{2} V_{1}^{2}+2 g J \eta_{n} \Delta H_{1-2}{ }^{\prime}} \tag{6-135} \end{equation*}

Amount of reheat in the rotor blades, Btu/lb\mathrm{Btu} / \mathrm{lb} of gas flow:

qbr=(1kb2)V122gJ+(1ηn)ΔH12\begin{equation*} q_{\mathrm{br}}=\left(1-k_{b}^{2}\right) \frac{V_{1}^{2}}{2 g J}+\left(1-\eta_{n}\right) \Delta H_{1-2}{ }^{\prime} \tag{6-136} \end{equation*}

where

a1,a2= absolute gas flow angles at the inlet  and outlet of the rotor blades, deg β1,β2= relative gas flow angles at the inlet  and outlet of the rotor blades, deg C1,C2= absolute gas flow velocities at the  inlet and outlet of the rotor blades, ft/secV1,V2= relative gas flow velocity at the inlet  and outlet of the rotor blades, ft/secU= peripheral speed of the rotor, ft/secdm= mean diameter of the rotor, in ηn= equivalent nozzle efficiency appli-  cable to the expansion process in the  blades ΔH12= isentropic enthalpy drop of the gases  flowing through the rotor blades due  to expansion or reaction, Btu/lb; ΔH12=0 if only impulse is ex-  changed \begin{aligned} a_{1}, a_{2}= & \begin{array}{r} \\ \quad \text { absolute gas flow angles at the inlet } \\ \quad \text { and outlet of the rotor blades, deg } \end{array} \\ \beta_{1}, \beta_{2}= & \begin{array}{r} \text { relative gas flow angles at the inlet } \\ \quad \text { and outlet of the rotor blades, deg } \end{array} \\ C_{1}, C_{2}= & \begin{array}{r} \text { absolute gas flow velocities at the } \\ \quad \text { inlet and outlet of the rotor blades, } \\ \quad \mathrm{ft} / \mathrm{sec} \end{array} \\ V_{1}, V_{2}= & \begin{array}{r} \text { relative gas flow velocity at the inlet } \\ \quad \text { and outlet of the rotor blades, } \mathrm{ft} / \mathrm{sec} \end{array} \\ U & =\text { peripheral speed of the rotor, } \mathrm{ft} / \mathrm{sec} \\ d_{m}= & \text { mean diameter of the rotor, in } \\ \eta_{n}= & \begin{array}{r} \text { equivalent nozzle efficiency appli- } \\ \quad \text { cable to the expansion process in the } \\ \quad \text { blades } \end{array} \\ \Delta H_{1-2^{\prime}}= & \begin{array}{r} \text { isentropic enthalpy drop of the gases } \\ \quad \text { flowing through the rotor blades due } \\ \quad \text { to expansion or reaction, Btu/lb; } \\ \Delta H_{1-2^{\prime}}=0 \text { if only impulse is ex- } \\ \text { changed } \end{array} \end{aligned}

All parameters refer to the mean diameter dmd_{m}, unless specified otherwise. The turbine overall efficiency ηt\eta_{t} defined by equation (6-19) can be established for a single-stage, single-rotor impulse turbine as

ηt=ηnηbηm\begin{equation*} \eta_{t}=\eta_{n} \eta_{b} \eta_{m} \tag{6-137} \end{equation*}

where ηn=\eta_{n}= nozzle efficiency ηb=\eta_{b}= rotor blade efficiency ηm=\eta_{m}= machine efficiency indicating the mechanical, leakage, and disk-friction losses in the machine. Equation (6-134) shows that the blade efficiency ηb\eta_{b} improves when β2\beta_{2} becomes much smaller than β1\beta_{1}. Reduction of β2\beta_{2} without decreasing the flow area at the blade exit can be achieved through an unsymmetrical blade design (fig. 6-56), where the radial blade height increases toward the exit. In actual designs, the amount of decrease of β2\beta_{2}, or the increase of radial height, is limited considering incipient flow separation and centrifugal stresses. Generally, the β2\beta_{2} of an unsymmetrical blade will be approximately β1(5\beta_{1}-\left(5^{\circ}\right. to 15)\left.15^{\circ}\right). Equation (6-134) also indicates that ηb\eta_{b} improves as a1a_{1} is reduced.

Design values of kbk_{b} vary from 0.80 to 0.90 . Design values of ηb\eta_{b} range from 0.7 to 0.92 .

Referring to figure 6-56, the radial height at the rotor inlet, hbh_{b}, is usually slightly larger ( 5 to 10 percent) than the nozzle radial height hnh_{n}. This height, together with the blade peripheral speed UU, will determine the centrifugal stress in the blades. The mean diameter of the rotor blades is defined as dm=dthbd_{m}=d_{t}-h_{b}, where dtd_{t} is the rotor tip diameter. Pitch or blade spacing, PbP_{b}, is measured at the mean diameter dmd_{m}. There is no critical relationship between blade pitch PbP_{b} and nozzle pitch PnP_{n}. There just should be a sufficient number of blades in the rotor to direct the gas flow. The number of blades zbz_{b} to be employed is established by the blade aspect ratio, hb/Cbh_{b} / C_{b} and the solidity Cb/PbC_{b} / P_{b}, where CbC_{b} is the chord length of the rotor blades. The magnitude of the blade aspect ratio ranges from 1.3 to 2.5. Design values of blade solidity vary from 1.4 to 2 . Best results will be determined by experiment. The number of rotor blades should have no common factor with the number of nozzles or of stator blades.

The blade face is concave, with radius rfr_{f}. The back is convex, with a circular arc of small radius rr\mathbf{r}_{\boldsymbol{r}} concentric with the face of the adjoining blade ahead. Two tangents to this arc to form the inlet and outlet blade angles θb1\theta_{b_{1}} and θb2\theta_{b_{2}} complete the blade back. The leading and trailing edges may have a small thickness tbt_{b}.

The inlet blade angle θb1\theta_{b_{1}} should be slightly larger than the inlet relative flow angle β1\beta_{1}. If θb1<β1\theta_{b_{1}}<\beta_{1}, the gas stream will strike the backs of the blades at the inlet, exerting a retarding effect on the blades and causing losses. If θb1>β1\theta_{b_{1}}>\beta_{1}, the stream will strike the concave faces of the blades and tend to increase the impulse. The outlet blade angle θb2\theta_{b_{2}} is generally made equal to the outlet relative flow angle β2\beta_{2}.

The mass flow rate w˙t\dot{w}_{t} through the various nozzle and blade sections of a turbine is assumed constant. The required blade flow areas can be calculated by the following correlations. Note that the temperature values used in calculating the gas densities at various sections must be corrected for reheating effects from friction and turbulence.

w˙t=ρ1V1Ab1ϵb1144=ρ2V2Ab2ϵb2144\begin{equation*} \dot{w}_{t}=\frac{\rho_{1} V_{1} A_{b_{1} \epsilon b_{1}}}{144}=\frac{\rho_{2} V_{2} A_{b_{2}} \epsilon b_{2}}{144} \tag{6-138} \end{equation*}

Total blade inlet area, in 2{ }^{2} :

Ab1=zbbb1hb1=zbhb1(Pbsinθb1tb)\begin{equation*} A_{b_{1}}=z_{b} b_{b_{1}} h_{b_{1}}=z_{b} h_{b_{1}}\left(P_{b} \sin \theta_{b_{1}}-t_{b}\right) \tag{6-139} \end{equation*}

Total blade exit area, in 2{ }^{2} :

Ab2=zbbb2hb2=zbhb2(Pbsinθb2tb)\begin{equation*} A_{b_{2}}=z_{b} b_{b_{2}} h_{b_{2}}=z_{b} h_{b_{2}}\left(P_{b} \sin \theta_{b_{2}}-t_{b}\right) \tag{6-140} \end{equation*}

where

Pb= pitch or rotor blade spacing =πdm/zb, in ρ1,ρ2 density of the gases at the inlet and  outlet of the rotor blades, lb/ft3V1,V2= relative gas flow velocities at the  inlet and outlet of the rotor blades,  ft/sec ϵb1,ϵb2= area coefficients at inlet and outlet  of the rotor blades = number of blades zbhb1,hb2= radial height at the inlet and outlet  of the rotor blades, in bb1,bb2= passage widths (normal to flow) at  the inlet and outlet of the rotor  blades, in θb1,θb2= rotor blade angles at inlet and out-  let, deg tb= thickness of blade edge at inlet and  outlet, in \begin{aligned} & P_{b} \quad=\text { pitch or rotor blade spacing } \\ & =\pi d_{m} / z_{b} \text {, in } \\ & \begin{aligned} \rho_{1}, \rho_{2} \quad & \text { density of the gases at the inlet and } \\ & \text { outlet of the rotor blades, } \mathrm{lb} / \mathrm{ft}^{3} \end{aligned} \\ & V_{1}, V_{2}=\text { relative gas flow velocities at the } \\ & \text { inlet and outlet of the rotor blades, } \\ & \text { ft/sec } \end{aligned} \quad \begin{aligned} \epsilon_{b_{1}}, \epsilon_{b_{2}}= & \text { area coefficients at inlet and outlet } \\ & \text { of the rotor blades } \\ = & \text { number of blades } \\ z_{b} \quad & \\ h_{b_{1}}, h_{b_{2}}= & \text { radial height at the inlet and outlet } \\ & \text { of the rotor blades, in } \\ b_{b_{1}}, b_{b_{2}}= & \begin{array}{c} \text { passage widths (normal to flow) at } \\ \text { the inlet and outlet of the rotor } \\ \text { blades, in } \end{array} \\ \theta_{b_{1}}, \theta_{b_{2}}= & \text { rotor blade angles at inlet and out- } \\ & \text { let, deg } \\ t_{b} & =\text { thickness of blade edge at inlet and } \\ & \text { outlet, in } \end{aligned}

blades and disks are shown in figures 6-53, 6-55, 6-56, and 6-57. Usually, blades are designed with a shroud, to prevent leakage over the blade tips and to reduce turbulence and thus improve efficiency. Frequently the shroud forms an integral portion of the blade, the shroud sections fitting closely together when assembled. In other designs the shroud may form a continuous ring (fig. 6556-55 ) which is attached to the blades by means of tongues at the blade tip, by rivets, or is welded to the shrouds. The blades may be either welded to the disk, or attached to it using "fir-tree" or other dovetail shapes.

The main loads to which a rotor blade is exposed can be divided into three types:

  1. Tension and bending due to centrifugal forces. -The radial component of the centrifugal forces acting on the blade body produces a centrifugal tensile stress which is a maximum at the root section. As a remedy, blades are often tapered, with the thinner section at the tip, for lower centrifugal root stresses. The centroids of various blade sections at different radii generally do not fall on a true radial line. Thus the centrifugal forces acting upon the offset centroids will produce bending stresses which also are a maximum at the root section.
  2. Bending due to gas loading.-The tangential driving force and the axial thrust produced by the momentum change of the gases passing over the blades may be treated as acting at the midheight of the blade to determine the amount of bending induced.
  3. Bending due to vibration loads.-The gas flow in the blade passages is not a uniform flow as assumed in theory, but varies cyclically from minimum to maximum. The resultant loads represent a dynamic force on the blades, having a corresponding cyclic variation. If the frequency of this force should become equal to the natural frequency of the blades, deflections may result which will induce bending stresses of considerable magnitude.

Detail stress analyses for rotor blades can be rather complex. A basic approach is to counteract a major portion of the bending moments from gas loading with the bending moments induced by the centrifugal forces at nominal operating speeds. This can be accomplished by careful

Figure 6-57.-Typical rotor blade constructions.

blade design. Thus the centrifugal tensile stresses become a first consideration in blade design, while other details such as centroid location and root configuration are established later to fulfill design requirements. The following correlations are established at the blade root section where stresses are most critical.

Centrifugal tensile stress at the root section of blade of uniform cross section, psi:

Sc=0.00045721gρbhbdmN2\begin{equation*} S_{c}=0.0004572 \frac{1}{g} \rho_{b} h_{b} d_{m} N^{2} \tag{6-141} \end{equation*}

Centrifugal tensile stress at the root section of a tapered blade, psi:

Sct=0.00045721gρbhbdmN2[11(atat)2(1+hb3dm)]\begin{align*} S_{\mathrm{ct}}=0.0004572 \frac{1}{g} \rho_{b} h_{b} d_{m} N^{2} & \\ & {\left[1-\frac{1-\left(\frac{a_{t}}{a_{t}}\right)}{2}\left(1+\frac{h_{b}}{3 d_{m}}\right)\right] } \tag{6-142} \end{align*}

Bending moment due to gas loading at the root section, in-lb:

Mg=hbw˙t2zbFt2+Fa2\begin{equation*} M_{g}=\frac{h_{b} \dot{w}_{t}}{2 z_{b}} \sqrt{F_{t}^{2}+F_{a}^{2}} \tag{6-143} \end{equation*}

where ρb=\rho_{b}= density of the blade material, lb/in3\mathrm{lb} / \mathrm{in}^{3} hb=h_{b}= average blade height, in dm=d_{m}= mean diameter of the rotor, in N=N= turbine speed, rpm ar=\mathrm{a}_{r}= sectional area at the blade root, in 2{ }^{2} at=a_{t}= sectional area at the blade tip, in 2{ }^{2} w˙t=\dot{w}_{t}= turbine gas flow rate, lb/sec\mathrm{lb} / \mathrm{sec} zb=z_{b}= number of blades Ft=F_{t}= tangential force acting on the blades, lb/lb/sec\mathrm{lb} / \mathrm{lb} / \mathrm{sec} (eq. (6-127)) Fa=axialF_{\mathrm{a}}=\mathrm{axial} thrust acting on the blades, lb/lb/\mathrm{lb} / \mathrm{lb} / sec (eq. (6-131)) The bending stresses at the root can be calculated from the resultant bending moment. The vibration stresses can be estimated from past design data. If the blade is fitted with a separate shroud, its centrifugal force produces additional stresses at the root. The total stress at the root section is obtained by adding these stresses to those caused by the centrifugal forces acting on the blades.

The stresses in a turbine rotor disk are induced by (1) the blades, and (2) the centrifugal forces acting on the disk material itself. In addition, there will be shear stresses resulting from the torque. As seen in figure 6-55, turbine disks are generally held quite thick at the axis, but taper off to a thinner disk rim to which the blades are attached. In single-rotor applications, it is possible to design a disk so that both radial and tangential stresses are uniform at all points, shear being neglected. In multirotor applications, it is difficult to do this because of the greatly increased axial length and the resulting large gaps between rotor and stator disks.

Equation (6-144) may be used to estimate the stresses in a uniform stress turbine disk, neglecting rotor blade effects: where

Sd=0.0001141gρddd2N2loge(t0tr)\begin{equation*} S_{d}=0.000114 \frac{1}{g} \rho_{d} \frac{d_{d}^{2} N^{2}}{\log _{e}\left(\frac{t_{0}}{t_{r}}\right)} \tag{6-144} \end{equation*} Sd= centrifugal tensile stress of a constant  stress turbine disk, psi ρd= density of the disk material, lb/in3dd= diameter of the disk, in N= turbine speed, rpm t0= thickness of the disk at the axis, in tr= thickness of the disk rim at dd, in \begin{aligned} S_{d}= & \text { centrifugal tensile stress of a constant } \\ & \text { stress turbine disk, psi } \\ \rho_{d}= & \text { density of the disk material, } \mathrm{lb} / \mathrm{in}^{3} \\ d_{d}= & \text { diameter of the disk, in } \\ N= & \text { turbine speed, rpm } \\ t_{0}= & \text { thickness of the disk at the axis, in } \\ t_{r}= & \text { thickness of the disk rim at } d_{d}, \text { in } \end{aligned}

Equation (6-144a) permits estimation of the stresses in any turbine disk, neglecting effects of the rotor blades:

Sd=0.00044251gWdriN2ad\begin{equation*} S_{d}=0.0004425 \frac{1}{g} W_{d} r_{i} \frac{N^{2}}{a_{d}} \tag{6-144a} \end{equation*}

where

Sd= centrifugal tensile stress of the turbine  disk, psi Wd= weight of the disk, lb ri= distance of the center of gravity of the half  disk from the axis, in ad= disk cross-sectional area, in2N= turbine speed, rpm \begin{aligned} S_{d}= & \text { centrifugal tensile stress of the turbine } \\ & \text { disk, psi } \\ W_{d}= & \text { weight of the disk, lb } \\ r_{i}= & \text { distance of the center of gravity of the half } \\ & \quad \text { disk from the axis, in } \\ a_{d}= & \text { disk cross-sectional area, } i n^{2} \\ N= & \text { turbine speed, rpm } \end{aligned}

For good turbine design, it is recommended that at maximum allowable design rotating speed, the SdS_{d} calculated by equation (6-144a) should be about 0.75 to 0.8 material yield strength.

Turbine rotor blades and disks are made of high-temperature alloys of three different base materials: iron, nickel, and cobalt, with chromium forming one of the major alloying elements. Tensile yield strength of 30000 psi minimum at a working temperature of 1800F1800^{\circ} \mathrm{F} is an important criterion for selection. Other required properties include low creep rate, oxidation and erosion resistance, and endurance under fluctuating loads. Haynes Stellite, Vascojet, and Inconel X are alloys frequently used. The rotor blades are fabricated either by precision casting or by precision forging methods. Rotor disks are best made of forgings for optimum strength.

Design of Single-Stage, Two-Rotor VelocityCompounded Impulse Turbines (figs. 6-9, 6-55, and 6-58)

In most impulse turbines, the number of rotors is limited to two. It is assumed that in a singlestage, two-rotor, velocity-compounded impulse turbine, expansion of the gases is completed in the nozzle, and that no further pressure change occurs during gas flow through the moving blades. As mentioned earlier, the two-rotor, velocity-compounded arrangement is best suited for low-speed turbines. In this case, the gases ejected from the first rotor blades still possess considerable kinetic energy. They are, therefore, redirected by a row of stationary blades into a second row of rotor blades, where additional work is extracted from the gases, which usually leave the second rotor blade row at a moderate velocity and in a direction close to the axial.

The velocity diagrams of a single-stage, tworotor, velocity-compounded impulse turbine are shown in figure 6-58, based on the mean rotor diameter. The peripheral speed of the rotor blades at this diameter is represented by UU. The gases leave the nozzles and enter the first rotor blades with an absolute velocity C1C_{1}, at an angle a1a_{1} with the plane of rotation. V1V_{1} and V2V_{2} are the relative flow velocities in ft/sec\mathrm{ft} / \mathrm{sec} at the inlet and outlet of the first rotor blades. The gases leave the first rotor blades and enter the stationary blades at an absolute flow velocity C2C_{2}, and at an angle a2a_{2}. After passing over the stationary blades, the gases depart and enter the second rotor blades at an absolute flow velocity C3C_{3}, and at an angle α3.V3\alpha_{3} . V_{3} and V4V_{4} are the relative inlet and outlet flow velocities at the second rotor blades. Angles β1,β2,β3\beta_{1}, \beta_{2}, \beta_{3}, and β4\beta_{4} represent the flow directions of V1,V2,V3V_{1}, V_{2}, V_{3}, and V4V_{4}.

As with single-rotor turbines, the exit velocity from any row of blades (rotary or stationary) is less than the inlet velocity, because of friction losses. It can be assumed that the blade velocity coefficient kbk_{b} has the same value for any row of blades:

kb=V2V1=C3C2=V4V3\begin{equation*} k_{b}=\frac{V_{2}}{V_{1}}=\frac{C_{3}}{C_{2}}=\frac{V_{4}}{V_{3}} \tag{6-145} \end{equation*}

In a multirotor turbine, the total work transferred is the sum of that of the individual rotors:

Figure 6-58.-Velocity diagrams of a typical single-stage, two-rotor, velocity-compounded impulse turbine.

Total work transferred to the blades of a tworotor turbine, ftlb/lb\mathrm{ft}-\mathrm{lb} / \mathrm{lb} of gas flow/sec

E2b=Ug(C1cosa1+C2cosa2+C3cosa3+C4cosa4)=Ug(V1cosβ1+V2cosβ2+V3cosβ3+V4cosβ4)\begin{align*} E_{2 b}=\frac{U}{g}\left(C_{1} \cos a_{1}\right. & +C_{2} \cos a_{2} \\ & \left.+C_{3} \cos a_{3}+C_{4} \cos a_{4}\right) \\ = & \frac{U}{g}\left(V_{1} \cos \beta_{1}+V_{2} \cos \beta_{2}\right. \\ & \left.+V_{3} \cos \beta_{3}+V_{4} \cos \beta_{4}\right) \tag{6-146} \end{align*}

Combined nozzle and blade efficiency of a tworotor turbine:

ηnb=E2bJΔH\begin{equation*} \eta_{\mathrm{nb}}=\frac{E_{2 b}}{J \Delta H} \tag{6-147} \end{equation*}

where

ΔH= overall isentropic enthalpy drop of the  turbine gases, Btu/lb = total available energy content of the tur-  bine gases (eq. 617) Equation (6137) can be rewritten for the tur- \begin{aligned} & \Delta H=\text { overall isentropic enthalpy drop of the } \\ & \quad \text { turbine gases, Btu/lb } \\ & \quad=\text { total available energy content of the tur- } \\ & \quad \text { bine gases (eq. } 6-17) \\ & \text { Equation }(6-137) \text { can be rewritten for the tur- } \end{aligned}

bine overall efficiency ηt\eta_{t} of a two-rotor turbine as

ηt=ηnbηm\begin{equation*} \eta_{\mathrm{t}}=\eta_{\mathrm{nb}} \eta_{\mathrm{m}} \tag{6-148} \end{equation*}

Ideally, ηnb\eta_{\mathrm{nb}} is a maximum for the singlestage, two-rotor, velocity-compounded impulse turbine velocity ratio

UC1=cosa14\frac{U}{C_{1}}=\frac{\cos a_{1}}{4}

i.e., when U=14C1tU=\frac{1}{4} C_{1} t. The workload for the second rotor of a two-rotor, velocity-compounded turbine is designed at about one-fourth of the total work.

The design procedures for the gas flow passages of the rotor and stationary blades of a single-stage, two-rotor turbine are exactly the same as those for a single-rotor turbine. However, velocities and angles of now change with each row of blades. As a result, the radial height of symmetrical blades increases with each row, roughly as shown in figure 6-55. The effects of reheating (increase of gas specific volume) in the flow passages must be taken into account when calculating the gas densities at various sections. Equation (6-136) may be used to estimate the amount of reheat at each row of blades. Also see sample calculation (6-11) and figure 6-60 for additional detail.

In the calculations for multirow unsymmetrical blades, the radial heights at the exit side of each row are determined first by equation (6-140). The radial heights at the blade inlets are then made slightly larger, approximately 8 percent, than those at the exit of the preceding row.

Design of Two-Stage, Two-Rotor PressureCompounded Impulse Turbines (figs. 6-10, 6-14 and 6-59)

An operational schematic of a typical twostage, two-rotor, pressure-compounded impulse turbine and its velocity diagrams at the mean diameter are shown in figures 6-10 and 6-59. Each stage of a pressure-compounded impulse turbine may be regarded as a single-stage impulse turbine rotating in its own individual housing. Most of the design characteristics of a single-stage turbine are applicable to the individual stages. The gas-spouting velocities C1C_{1} and C3C_{3}, at flow angles a1a_{1} and a3a_{3}, of the firstand second-stage nozzles, are designed to be approximately the same. V1,V2,V3V_{1}, V_{2}, V_{3}, and V4V_{4} represent the relative flow velocities at inlets and outlets of the rotor blades. β1,β2,β3\beta_{1}, \beta_{2}, \beta_{3}, and β4\beta_{4} are the corresponding flow angles for V1,V2V_{1}, V_{2}, V3V_{3}, and V4V_{4}. The second-stage nozzles are designed to receive the gas flow discharged from the first-stage rotor blades at an absolute velocity C2C_{2}, and to turn it efficiently to a desired angle a3a_{3}. Simultaneously, the gases are accelerated to a desired velocity C3C_{3}, through expansion to a lower pressure. The flow at the outlet of the second rotor has an absolute velocity C4C_{4} and a flow angle a4a_{4}. UU is the rotor peripheral speed at the mean effective diameter dmd_{m}.

The total work performed in the turbine is the sum of that of the separate stages. These may be designed to divide the load equally (i.e., the

Figure 6-59.-Velocity diagrams of a typical twostage, two-rotor, pressure-compounded impulse turbine.

velocity diagrams of each stage are identical or C1=C3,C2=C4,a1=a3,a2=a4C_{1}=C_{3}, C_{2}=C_{4}, a_{1}=a_{3}, a_{2}=a_{4}, etc.). The friction losses occurring in the first stage is passed on in the gas stream as additional enthalpy and increases the available energy for the second stage. Also, the kinetic energy of the gases leaving the first stage is largely used and not entirely lost as with a single-stage turbine. The carryover ratio IcI_{c}, i.e., the ratio of the kinetic energy actually utilized as inlet energy by the second-stage nozzles to the total kinetic energy of the gases leaving the first stage, can vary from 0.4 to close to unity. The axial distance between the first-stage rotor and the second-stage nozzle, as well as the leakages through the sealing diaphragm between stages, should be minimized for optimum carryover.

The determination of the right enthalpy drop resulting in equal work for each stage may require a trial-and-error approach, in view of the effects of reheating. Or, the proper enthalpy drop may be estimated from previous designs and test data. With the velocity coefficients for nozzles and blades given by past or concurrent experiments, equations (6-122) and (6-136) can be used to estimate the amount of reheating.

Most equations established for the singlestage turbines may be employed in the design calculations for two-stage turbines. The following additional correlations are available for the design of second stage nozzles:

T2t=T2+rCC222gJCpP2t=P2(T2tT2)γγ1C3=kn2gJCpT2t[1(p3p2t)γ1γ]=knrCC22+2gJΔH23(Ant)2=w˙t[gγ[2γ+1RT2t]γ+1γ1\begin{gather*} T_{2 t}=T_{2}+r_{C} \frac{C_{2}^{2}}{2 g J C_{p}} \tag{6-149}\\ P_{2 t}=P_{2}\left(\frac{T_{2 t}}{T_{2}}\right)^{\frac{\gamma}{\gamma-1}} \tag{6-150}\\ C_{3}=k_{n} \sqrt{2 g J C_{p} T_{2 t}\left[1-\left(\frac{p_{3}}{p_{2 t}}\right)^{\frac{\gamma-1}{\gamma}}\right]} \\ =k_{n} \sqrt{r_{C} C_{2}^{2}+2 g J \Delta H_{2-3}} \tag{6-151}\\ \left(A_{n t}\right)_{2}=\frac{\dot{w}_{t}}{\left[\sqrt{\frac{g \gamma\left[\frac{2}{\gamma+1}\right.}{R T_{2 t}}}\right]^{\frac{\gamma+1}{\gamma-1}}} \tag{6-152} \end{gather*}

where

$T_{2 t} \quad=$ turbine gas total (stagnation) temper-
ature at second-stage nozzle inlet,
${ }^{\circ} \mathrm{R}$
$T_{2} \quad=$ turbine gas static temperature at
second-stage nozzle inlet, ${ }^{\circ} \mathrm{R}$
$p_{2 t} \quad$ = turbine gas total pressure at second-
stage nozzle inlet, psia
$p_{2} \quad=$ turbine gas static pressure at second-
stage nozzle inlet, psia
$C_{2}=$ absolute gas flow velocity at first-
stage rotor blade outlet, ft/sec
$C_{3} \quad$ = gas-spouting velocity at second-stage
nozzle exit, ft/sec
$I_{c} \quad=$ second-stage carryover ratio of kinetic
energy
$C_{p} \quad=$ turbine gas specific heat at constant
pressure, Btu/lb-deg F
$\gamma \quad=$ turbine gas specific heat ratio
$\Delta H_{2-3^{\prime}}=$ isentropic enthalpy drop of the gases
flowing through the second-stage
nozzles due to expansion, Btu/lb
$\left(A_{\mathrm{nt}}\right)_{2}=$ required total second-stage nozzle
area, in ${ }^{2}$
$k_{n} \quad=$ nozzle velocity coefficient
$\epsilon_{\mathrm{nt}} \quad=$ nozzle throat area coefficient

Sample Calculation (6-11)

From sample calculation (6-5), the following data have been obtained for the turbine of the A-1 stage engine turbopump.

Turbine gas mixture ratio, LO2/RP1=0.408\mathrm{LO}_{2} / \mathrm{RP}-1=0.408 Turbine gas specific heat at constant pressure, Cp=0.653Btu/lbdegFC_{p}=0.653 \mathrm{Btu} / \mathrm{lb}-\operatorname{deg} \mathrm{F} Turbine gas specific heat ratio, y=1.124y=1.124 Turbine gas constant, R=53.6ft/RR=53.6 \mathrm{ft} /{ }^{\circ} \mathrm{R} Gas total temperature at turbine inlet, T0=1860RT_{0} =1860^{\circ} \mathrm{R} Gas total pressure at turbine inlet, p0=640\mathrm{p}_{0}=640 psia Gas static pressure at turbine exhaust, pe=27p_{e}=27 psia Total available energy content of the turbine gases, ΔH=359Btu/lb\Delta H=359 \mathrm{Btu} / \mathrm{lb} Turbine gas flow rate, w˙t=92lb/sec\dot{w}_{t}=92 \mathrm{lb} / \mathrm{sec} Turbine shaft speed, N=7000rpmN=7000 \mathrm{rpm} Overall turbine efficiency (when using velocitycompounded wheels), ηt=58.2\eta_{t}=58.2 percent In addition, the following design data are set forth:

Nozzle aspect ratio =9.7=9.7 Nozzle velocity coefficient, kn=0.96k_{n}=0.96 Nozzle throat area coefficient, ϵnt=0.97\epsilon_{\mathrm{nt}}=0.97 Nozzle exit area coefficient, ϵne =0.95\epsilon_{\text {ne }}=0.95 Rotor and stator blade velocity coefficient, kb=0.89k_{b}=0.89 Rotor and stator blade exit area coefficient, ϵb2=0.95{ }_{\epsilon_{b 2}}=0.95 Chord length of rotor and stator blades, Cb=1.4inC_{b}=1.4 \mathrm{in} Partition thickness at the exit of nozzles and blades, tn=tb=0.05int_{n}=t_{b}=0.05 \mathrm{in} Solidity of first rotor blades =1.82=1.82 Solidity of stator blades =1.94=1.94 Solidity of second rotor blades =1.67=1.67 (a) Determine the velocity diagrams and principal dimensions of the single-stage, two-rotor, velocity-compounded, impulse-type turbine for the A-1 stage engine turbopump, with about 6 percent reaction in rotor and stator blades downstream of the nozzles. (b) Determine the velocity diagrams of an alternate two-stage, two-rotor, pressurecompounded, impulse-type turbine for the A-1 stage engine turbopump, with equal work in each stage and about 3 percent reaction in the rotor blades downstream of the nozzles of each stage.

Figure 6-60.-Temperature-entropy-enthalpy diagram of the gas processes in a single-stage, two-rotor, velocity-compounded impulse turbine with small amount of reactions downstream of the nozzles.

Solution

(a) Single-stage, two-rotor, velocitycompounded impulse turbine.

A representative velocity diagram for this turbine is shown in figure 6-58. Figure 6-60 represents the temperature-entropy-enthalpy diagram for the gas processes involved in the operation of this turbine. The following subscripts denote the various points and processes listed: 0,1,2,3,4=0,1,2,3,4= Points representing inlet conditions at the nozzles; first rotor blades; stator blades; second rotor blades; and the exit conditions of the second rotor blades. 1,2,3,4=1^{\prime}, 2^{\prime}, 3^{\prime}, 4^{\prime}= Points representing exit conditions at the nozzles; first rotor blades; stator blades; and second rotor blades, for an ideal isentropic expansion process. 01,12,23,34=0-1^{\prime}, 1-2^{\prime}, 2-3^{\prime}, 3-4^{\prime}= Path of an ideal isentropic expansion process in the nozzles; first rotor blades; stator blades; and second rotor blades. 01,12,23,34=0-1,1-2,2-3,3-4= Path of actual processes in the nozzles; first rotor blades; stator blades; and second rotor blades. 11,22,33,44=1^{\prime}-1,2^{\prime}-2,3^{\prime}-3,4^{\prime}-4= Differences along constant pressure lines, between ideal isentropic expansion processes and actual processes, due to friction losses and reheating in the nozzles, first rotor blades, stator blades, and second rotor blades

Point "0"-Nozzle Inlet

T0=T_{0}= nozzle inlet total temperature = turbine inlet total temperature =1860R=1860^{\circ} \mathrm{R} p0=p_{0}= nozzle inlet total pressure == turbine inlet total pressure =640psia=640 \mathrm{psia} ΔH=\Delta H= overall isentropic enthalpy drop of the turbine gases = total available energy content of the turbine gases =359Btu/lb=359 \mathrm{Btu} / \mathrm{lb} ηn=\eta_{n}= nozzle efficiency =kn2=(0.96)2=0.92=k_{n}{ }^{2}=(0.96)^{2}=0.92

Point "1"-Nozzle exit = First Rotor Blade Inlet

Since about 6 percent of the overall isentropic enthalpy drop ΔH\Delta H is assumed to occur in the rotor and stator blades, the isentropic enthalpy drop in the nozzles

ΔH01=ΔH(10.06)=359×0.94=337.5Btu/lb\Delta H_{0-1^{\prime}}=\Delta H(1-0.06)=359 \times 0.94=337.5 \mathrm{Btu} / \mathrm{lb}

We can write:

ΔH01=CpT0[1(p1p0)γ1γ]\Delta H_{0-1}=C_{p} T_{0}\left[1-\left(\frac{p_{1}}{p_{0}}\right)^{\frac{\gamma-1}{\gamma}}\right]

From this, the gas static pressure at the nozzle exit

p1=p0[1ΔH01CpT0]γγ1=640×[1337.50.653×1860]1.1240.124=640×(0.722)9.06=640×0.053=33.94psia\begin{aligned} p_{1} & =p_{0}\left[1-\frac{\Delta H_{0-1}}{C_{p} T_{0}}\right]^{\frac{\gamma}{\gamma-1}} \\ & =640 \times\left[1-\frac{337.5}{0.653 \times 1860}\right]^{\frac{1.124}{0.124}} \\ & =640 \times(0.722)^{9.06}=640 \times 0.053=33.94 \mathrm{psia} \end{aligned}

From equation (6-121), the gas spouting velocity at the nozzle exit

C1=kn2gJΔH01=0.9616.9×106=3940fpsC_{1}=k_{n} \sqrt{2 g J \Delta H_{0-1^{\prime}}}=0.96 \sqrt{16.9 \times 10^{6}}=3940 \mathrm{fps}

From equation (6-122), the amount of reheat in the nozzles

qnr=(1kn2)C12kn22gJ=0.08×155240000.92×64.4×778=27Btu/lbq_{\mathrm{nr}}=\frac{\left(1-k_{\mathrm{n}}{ }^{2}\right) C_{1}{ }^{2}}{k_{n}{ }^{2} 2 g J}=\frac{0.08 \times 15524000}{0.92 \times 64.4 \times 778}=27 \mathrm{Btu} / \mathrm{lb}

Referring to figure 6-60, the gas temperature at the nozzle exit, following an isentropic expansion

T1=T0ΔH01Cp=1860337.50.653=1344RT_{1^{\prime}}=T_{0}-\frac{\Delta H_{0-1^{\prime}}}{\mathrm{C}_{p}}=1860-\frac{337.5}{0.653}=1344^{\circ} \mathrm{R}

The actual gas static temperature at the nozzle exit

T1=T1+qnrCp=1344+270.653=1385RT_{1}=T_{1^{\prime}}+\frac{q_{\mathrm{nr}}}{C_{p}}=1344+\frac{27}{0.653}=1385^{\circ} \mathrm{R}

The gas density at the nozzle exit

ρ1=p1T1×144R=33.94×1441385.4×53.6=0.0658lb/ft3\rho_{1}=\frac{p_{1}}{T_{1}} \times \frac{144}{R}=\frac{33.94 \times 144}{1385.4 \times 53.6}=0.0658 \mathrm{lb} / \mathrm{ft}^{3}

We will use an angle a1a_{1} of 2525^{\circ} for the spouting-gas-flow direction at the nozzle exit.

Ideally, the efficiency ηnb\eta_{\mathrm{nb}} of a two-rotor, velocity-compounded impulse turbine is a maximum when the turbine velocity ratio

UC1=cosa14\frac{U}{C_{1}}=\frac{\cos a_{1}}{4}

From this, the peripheral speed at the mean diameter of the rotor

U=C1cosa14=3940×cos254=3940×0.226=890fps\begin{aligned} U=C_{1} \frac{\cos a_{1}}{4}=3940 \times \frac{\cos 25^{\circ}}{4} & \\ & =3940 \times 0.226=890 \mathrm{fps} \end{aligned}

From equation (1-129), the turbine rotor mean diameter

dm=720UπN=720×890π×7000=29.1ind_{m}=\frac{720 U}{\pi N}=\frac{720 \times 890}{\pi \times 7000}=29.1 \mathrm{in}

From equation (1-130), the relative gas flow angle β1\beta_{1} at the inlet to the first rotor blade can be calculated:

tanβ1=C1sina1C1cosa1U=3940×0.4233940×0.906890=0.622β1=3153\begin{aligned} \tan \beta_{1} & =\frac{C_{1} \sin a_{1}}{C_{1} \cos a_{1}-U}=\frac{3940 \times 0.423}{3940 \times 0.906-890}=0.622 \\ \beta_{1} & =31^{\circ} 53^{\prime} \end{aligned}

Referring to figure 6-58, the relative gas flow velocity at the first rotor blade inlet

V1=C1sina1sinβ1=3940×sin25sin3153=3940×0.4230.528=3156fps\begin{aligned} V_{1}=\frac{C_{1} \sin a_{1}}{\sin \beta_{1}}=\frac{3940 \times \sin 25^{\circ}}{\sin 31^{\circ} 53^{\prime}} & \\ & =\frac{3940 \times 0.423}{0.528}=3156 \mathrm{fps} \end{aligned}

Point "2"-First Rotor Blade Exit = Stator Blade Inlet

Assume that the given 6 percent reaction downstream of the nozzles is equally divided between the two rotors and the stator. Then the isentropic enthalpy drop in the first rotor blade can be approximated as

ΔH12=0.063×359=7.18Btu/lb\Delta H_{1-2^{\prime}}=\frac{0.06}{3} \times 359=7.18 \mathrm{Btu} / \mathrm{lb}

Using equation (6-135), the relative gas flow velocity at the exit of the first rotor blades

DESIGN OF TURBOPUMP PROPELLANT-FEED SYSTEMS

V2=kb2V12+2gJηnΔH12=(0.89×3156)2+64.4×778×0.92×7.18=2866fps\begin{aligned} V_{2} & =\sqrt{k_{b}^{2} V_{1}^{2}+2 g J \eta_{n} \Delta H_{1-2^{\prime}}} \\ & =\sqrt{(0.89 \times 3156)^{2}+64.4 \times 778 \times 0.92 \times 7.18} \\ & =2866 \mathrm{fps} \end{aligned}

From equation (6-136), the amount of reheat in the first rotor blades,

qbrl=(1kb2)V122gJ+(1ηn)ΔH12=[1(0.89)2]×(3156)264.4×778+(10.92)×7.18=41.975Btu/lb\begin{aligned} q_{\mathrm{brl}} & =\left(1-k_{b}^{2}\right) \frac{V_{1}^{2}}{2 g J}+\left(1-\eta_{n}\right) \Delta H_{1-2^{\prime}} \\ & =\left[1-(0.89)^{2}\right] \times \frac{(3156)^{2}}{64.4 \times 778}+(1-0.92) \times 7.18 \\ & =41.975 \mathrm{Btu} / \mathrm{lb} \end{aligned}

The static gas pressure at the first rotor blade exit

p2=p1[1ΔH12CpT1]γγ1=33.94×[17.180.653×1385]9.06=33.94×0.93=31.6psia\begin{aligned} p_{2} & =p_{1}\left[1-\frac{\Delta H_{1-2^{\prime}}}{C_{p} T_{1}}\right]^{\frac{\gamma}{\gamma-1}} \\ & =33.94 \times\left[1-\frac{7.18}{0.653 \times 1385}\right]^{9.06} \\ & =33.94 \times 0.93=31.6 \mathrm{psia} \end{aligned}

The gas static temperature at the exit of the first rotor blade row following an isentropic expansion

T2=T1ΔH12/Cp=13857.18/0.653=1374RT_{2^{\prime}}=T_{1}-\Delta H_{1-2^{\prime}} / C_{p}=1385-7.18 / 0.653=1374^{\circ} \mathrm{R}

The actual static gas temperature at the first rotor blade row exit

T2=T2+qbr2Cp=1374+41.9750.653=1438RT_{2}=T_{2^{\prime}}+\frac{q_{\mathrm{br} 2}}{C_{\mathrm{p}}}=1374+\frac{41.975}{0.653}=1438^{\circ} \mathrm{R}

Gas density at the first rotor blade exit

ρ2=144p2RT2=144×31.653.6×1438=0.059lb/ft3\rho_{2}=\frac{144 p_{2}}{R T_{2}}=\frac{144 \times 31.6}{53.6 \times 1438}=0.059 \mathrm{lb} / \mathrm{ft}^{3}

We use an angle β2\beta_{2} of 2525^{\circ} for the relative gas flow direction at the first rotor blade exits (unsymmetrical blades). The absolute flow angle α2\alpha_{2} at the first rotor blade exits can be calculated from

tana2=V2sinβ2Vcosβ2U=2866×sin252866×cos25890=0.707a2=3515\begin{aligned} \tan a_{2} & =\frac{V_{2} \sin \beta_{2}}{V \cos \beta_{2}-U}=\frac{2866 \times \sin 25^{\circ}}{2866 \times \cos 25^{\circ}-890}=0.707 \\ a_{2} & =35^{\circ} 15^{\prime} \end{aligned}

The absolute flow velocity at the first rotor blade exit

C2=V2sinβ2sinα2=2866×sin25sin3515=12100.577=2080fpsC_{2}=\frac{V_{2} \sin \beta_{2}}{\sin \alpha_{2}}=\frac{2866 \times \sin 25^{\circ}}{\sin 35^{\circ} 15^{\prime}}=\frac{1210}{0.577}=2080 \mathrm{fps}

Point "3"-Stator Blade Exit == Second Rotor Blade Inlet

The isentropic enthalpy drop in the stator blades

ΔH23=ΔH12=7.18Btu/lb\Delta H_{2-3^{\prime}}=\Delta H_{1-2^{\prime}}=7.18 \mathrm{Btu} / \mathrm{lb}

Analogous to equation (6-135), the absolute gas flow velocity at the stator blade inlets

C3=kb2C22+2gJηnΔH23=(0.89×2080)2+64.4×778×0.92×7.18=1938fps\begin{aligned} C_{3} & =\sqrt{k_{b}{ }^{2} C_{2}{ }^{2}+2 g J \eta_{n} \Delta H_{2-3^{\prime}}} \\ & =\sqrt{(0.89 \times 2080)^{2}+64.4 \times 778 \times 0.92 \times 7.18} \\ & =1938 \mathrm{fps} \end{aligned}

Reheat in the stator blades

qbs=(1kb2)C222gJ+(1ηn)ΔH23q_{\mathrm{bs}}=\left(1-k_{b}^{2}\right) \frac{C_{2}^{2}}{2 g J}+\left(1-\eta_{n}\right) \Delta H_{2-3^{\prime}}

(Analogous to eq. (6-136))

=[1(0.89)2]×(2080)264.4×778+(10.92)×7.18=18.53Btu/lb\begin{aligned} & =\left[1-(0.89)^{2}\right] \times \frac{(2080)^{2}}{64.4 \times 778}+(1-0.92) \times 7.18 \\ & =18.53 \mathrm{Btu} / \mathrm{lb} \end{aligned}

The static gas pressure at the stator blade exits

p3=p2[1H23CpT2]γγ1=31.6×[17.180.653×1438]9.06=29.42psia\begin{aligned} p_{3} & =p_{2}\left[1-\frac{H_{2-3^{\prime}}}{C_{p} T_{2}}\right]^{\frac{\gamma}{\gamma-1}}=31.6 \times\left[1-\frac{7.18}{0.653 \times 1438}\right]^{9.06} \\ & =29.42 \mathrm{psia} \end{aligned}

Gas static temperature at the stator blade exits following an isentropic expansion

T3=T2ΔH23/Cp=14387.18/0.653=1427RT_{3^{\prime}}=T_{2}-\Delta H_{2-3^{\prime}} / C_{p}=1438-7.18 / 0.653=1427^{\circ} \mathrm{R}

Actual static gas temperature at the stator blade exits

T3=T3+qbsCp=1427+18.530.653=1456RT_{3}=T_{3^{\prime}}+\frac{q_{\mathrm{bs}}}{C_{p}}=1427+\frac{18.53}{0.653}=1456^{\circ} \mathrm{R}

Gas density at the stator blade exit

ρ3=144p3RT3=144×29.4253.6×1456=0.0544lb/ft3\rho_{3}=\frac{144 p_{3}}{R T_{3}}=\frac{144 \times 29.42}{53.6 \times 1456}=0.0544 \mathrm{lb} / \mathrm{ft}^{3}

We use an angle a3a_{3} of 3535^{\circ} for the absolute gas flow direction at the stator blade exit ( α3a2\alpha_{3} \cong a_{2} ). The relative flow angle β3\beta_{3} at the stator blade exit can be calculated from

tanβ3=C3sina3C3cosa3U=1938×0.5741938×0.819890=1.596β3=5756\begin{aligned} \tan \beta_{3} & =\frac{C_{3} \sin a_{3}}{C_{3} \cos a_{3}-U}=\frac{1938 \times 0.574}{1938 \times 0.819-890}=1.596 \\ \beta_{3} & =57^{\circ} 56^{\prime} \end{aligned}

The relative flow velocity at the stator blade exit

V3=C3sina3sinβ3=1938×0.5740.847=1312fpsV_{3}=\frac{C_{3} \sin a_{3}}{\sin \beta_{3}}=\frac{1938 \times 0.574}{0.847}=1312 \mathrm{fps}

Point "4"-Second Rotor Blade Exit

The isentropic enthalpy drop in the second rotor blades

ΔH34=ΔH12=7.18Btu/lb\Delta H_{3-4^{\prime}}=\Delta H_{1-2^{\prime}}=7.18 \mathrm{Btu} / \mathrm{lb}

The relative gas flow velocity at the second rotor blade exit

V4=kb2V32+2gJηnΔH34=(0.89×1312)2+64.4×778×0.92×7.18=1306fps\begin{aligned} V_{4} & =\sqrt{k_{b}^{2} V_{3}^{2}+2 g J \eta_{n} \Delta H_{3-4^{\prime}}} \\ & =\sqrt{(0.89 \times 1312)^{2}+64.4 \times 778 \times 0.92 \times 7.18} \\ & =1306 \mathrm{fps} \end{aligned}

The amount of reheat in the second rotor blades

qbr2=(1kb2)V322gJ+(1ηn)ΔH34=[1(0.89)2]×(1312)264.4×778+(10.92)×7.18=7.73Btu/sec\begin{aligned} q_{\mathrm{br} 2} & =\left(1-k_{b}^{2}\right) \frac{V_{3}^{2}}{2 g J}+\left(1-\eta_{n}\right) \Delta H_{3-4^{\prime}} \\ & =\left[1-(0.89)^{2}\right] \times \frac{(1312)^{2}}{64.4 \times 778}+(1-0.92) \times 7.18 \\ & =7.73 \mathrm{Btu} / \mathrm{sec} \end{aligned}

Gas static pressure at the second rotor blade exit

p4=p3[1ΔH34CpT3]γγ1=29.42×[17.180.653×1456]9.06=27.46psia>27psia(pe)\begin{aligned} p_{4} & =p_{3}\left[1-\frac{\Delta H_{3-4^{\prime}}}{C_{p} T_{3}}\right]^{\frac{\gamma}{\gamma-1}} \\ & =29.42 \times\left[1-\frac{7.18}{0.653 \times 1456}\right]^{9.06} \\ & =27.46 \mathrm{psia}>27 \mathrm{psia}\left(p_{e}\right) \end{aligned}

p4p_{4} is slightly higher than the turbine exit pressure (underexpansion), because of the reheating effects.

The gas static temperature at the second rotor blade exits following an isentropic expansion

T4=T3ΔH34/Cp=14567.180.653=1445Btu/lbT_{4^{\prime}}=T_{3}-\Delta H_{3-4^{\prime}} / C_{p}=1456-\frac{7.18}{0.653}=1445 \mathrm{Btu} / \mathrm{lb}

The actual gas static temperature at the second rotor blade exit

T4=T4+qbr2Cp=1445+7.730.653=1457RT_{4}=T_{4^{\prime}}+\frac{q_{\mathrm{br} 2}}{C_{p}}=1445+\frac{7.73}{0.653}=1457^{\circ} \mathrm{R}

Gas density at the second rotor blade exits

ρ4=144p4RT4=144×27.4653.6×1457=0.0506lb/ft3\rho_{4}=\frac{144 p_{4}}{R T_{4}}=\frac{144 \times 27.46}{53.6 \times 1457}=0.0506 \mathrm{lb} / \mathrm{ft}^{3}

We use an angle β4\beta_{4} of 4444^{\circ} for the relative gas flow direction at the second rotor blade exits (unsymmetrical blades). The absolute flow angle a4a_{4} at the second rotor blade exits can be calculated from

tanα4=V4sinβ4V4cosβ4U=1306×0.6951306×0.719890=18.5a4=8655\begin{aligned} \tan \alpha_{4} & =\frac{V_{4} \sin \beta_{4}}{V_{4} \cos \beta_{4}-U}=\frac{1306 \times 0.695}{1306 \times 0.719-890}=18.5 \\ a_{4} & =86^{\circ} 55^{\prime} \end{aligned}

The absolute flow velocity at the second rotor blade exits

C4=V4sinβ4sinα4=1306×0.6950.9985=908fpsC_{4}=\frac{V_{4} \sin \beta_{4}}{\sin \alpha_{4}}=\frac{1306 \times 0.695}{0.9985}=908 \mathrm{fps}

Nozzle Dimensions

From equation (6-123), the required total nozzle throat area

Ant=w˙tϵntp0gγ[2γ+1]γ+1γ1RT0=920.97×64032.2×1.124(0.94)17.1553.6×1860=13.22in2\begin{aligned} A_{\mathrm{nt}} & =\frac{\dot{w}_{t}}{\epsilon_{\mathrm{nt}} p_{0} \sqrt{\frac{g \gamma\left[\frac{2}{\gamma+1}\right]^{\frac{\gamma+1}{\gamma-1}}}{R T_{0}}}} \\ & =\frac{92}{0.97 \times 640 \sqrt{\frac{32.2 \times 1.124(0.94)^{17.15}}{53.6 \times 1860}}} \\ & =13.22 \mathrm{in}^{2} \end{aligned}

We use a radial height hnth_{\mathrm{nt}} of 1.5 inches at the nozzle throat. Thus the nozzle width at the throat

bnt=hnt Nozzle aspect ratio =1.59.7=0.1548inb_{\mathrm{nt}}=\frac{h_{\mathrm{nt}}}{\text { Nozzle aspect ratio }}=\frac{1.5}{9.7}=0.1548 \mathrm{in}

The number of nozzles

zn=Antbnthnt=13.220.1548×1.5=57z_{n}=\frac{A_{\mathrm{nt}}}{b_{\mathrm{nt}} h_{\mathrm{nt}}}=\frac{13.22}{0.1548 \times 1.5}=57

Pitch or nozzle spacing

Pn=πdmzn=π×29.157=1.604inP_{n}=\frac{\pi d_{m}}{z_{n}}=\frac{\pi \times 29.1}{57}=1.604 \mathrm{in}

We allow 22^{\circ} between nozzle exit angle θn\theta_{n} and nozzle spouting-gas flow angle a1a_{1}; thus

θn=a12=252=23\theta_{n}=a_{1}-2=25-2=23^{\circ}

From equation (6-125), the required total nozzle exit area,

Ane=144w˙tρ1C1ϵne=144×920.0658×3940×0.95=53.75in2A_{\mathrm{ne}}=\frac{144 \dot{w}_{t}}{\rho_{1} C_{1} \epsilon_{\mathrm{ne}}}=\frac{144 \times 92}{0.0658 \times 3940 \times 0.95}=53.75 \mathrm{in}^{2}

Combining equations (6-125) and (6-126), we obtain radial height and width at the nozzle exit:

hne=Aneπdmsinθnzntn=53.75π×29.1×0.39157×0.05=1.64in\begin{aligned} h_{\mathrm{ne}} & =\frac{A_{\mathrm{ne}}}{\pi d_{m} \sin \theta_{n}-z_{n} t_{n}}=\frac{53.75}{\pi \times 29.1 \times 0.391-57 \times 0.05} \\ & =1.64 \mathrm{in} \end{aligned}

bne=AneZnhne=53.7557×1.64=0.576inb_{\mathrm{ne}}=\frac{\frac{A_{\mathrm{ne}}}{Z_{\mathrm{n}}}}{h_{\mathrm{ne}}}=\frac{53.75}{57 \times 1.64}=0.576 \mathrm{in}

First Rotor Blade Dimensions (at dmd_{m} ) The pitch or blade spacing

pbr1= Blade chord length Cb Blade solidity =1.41.82=0.769inp_{\mathrm{br} 1}=\frac{\text { Blade chord length } C_{b}}{\text { Blade solidity }}=\frac{1.4}{1.82}=0.769 \mathrm{in}

From equation (6-140a), the number of blades

zbr1=πdmPbr1=π×29.10.769=119z_{\mathrm{br}_{1}}=\frac{\pi d_{m}}{P_{\mathrm{br}_{1}}}=\frac{\pi \times 29.1}{0.769}=119

Allow 272^{\circ} 7^{\prime} between inlet blade angle θb1r1\theta_{b_{1 r 1}} and inlet relative flow angle β1\beta_{1}; thus

θb1Γ1=β1+27=3153+27=34\theta_{b_{1 \Gamma 1}}=\beta_{1}+2^{\circ} 7^{\prime}=31^{\circ} 53^{\prime}+2^{\circ} 7^{\prime}=34^{\circ}

Make exit blade angle θb2r1\theta_{b_{2 r 1}} equal to exit relative flow angle β2\beta_{2}

θb2r1=β2=25\theta_{b_{2 r 1}}=\beta_{2}=25^{\circ}

We select a blade radial height at the inlet

hb1r1=hne(1×0.08)=1.64×1.08=1.77inh_{b_{1 \mathrm{r} 1}}=h_{\mathrm{ne}}(1 \times 0.08)=1.64 \times 1.08=1.77 \mathrm{in}

The blade passage width at the inlet

bb1r1=pbr1sinθb1r1tb=0.769×0.5590.05=0.379in\begin{aligned} b_{b_{1} r_{1}} & =p_{b r_{1}} \sin \theta_{b_{1} r_{1}}-t_{b}=0.769 \times 0.559-0.05 \\ & =0.379 \mathrm{in} \end{aligned}

From equation (6-138), the required total blade exit area

Ab2r1=144w˙tρ2V2ϵb2=144×920.059×2866×0.95=82.5in2A_{b_{2} r_{1}}=\frac{144 \dot{w}_{t}}{\rho_{2} V_{2} \epsilon_{b_{2}}}=\frac{144 \times 92}{0.059 \times 2866 \times 0.95}=82.5 \mathrm{in}^{2}

Combining equations (1-139) and (1-140a), we obtain the blade radial height at the exit

hb2r1=Ab2r1πdmsinθb2r1zbtb=82.5π×29.1×0.423119×0.05=2.52in\begin{aligned} h_{b_{2} r_{1}} & =\frac{A_{b_{2} r_{1}}}{\pi d_{m} \sin \theta_{b_{2} r_{1}}-z_{b} t_{b}} \\ & =\frac{82.5}{\pi \times 29.1 \times 0.423-119 \times 0.05}=2.52 \mathrm{in} \end{aligned}

The blade passage width at the exit

bb2r1=Pbr1sinθb2r1tb=0.769×0.4430.05=0.291in\begin{aligned} b_{b_{2} r_{1}} & =P_{b r_{1}} \sin \theta_{b_{2} r_{1}}-t_{b}=0.769 \times 0.443-0.05 \\ & =0.291 \mathrm{in} \end{aligned}

The mean blade radial height

hbr1=1.77+2.522=2.145inh_{b r_{1}}=\frac{1.77+2.52}{2}=2.145 \mathrm{in}

Assume a tapered blade with shroud, and that it is subject to approximately the same tensile stresses from centrifugal forces, as would be a uniform blade without shroud. The blades shall be made of Timken alloy, with a density ρb=0.3lb/in3\rho_{b}=0.3 \mathrm{lb} / \mathrm{in}^{3}. Check the centrifugal tensile stresses at the root section using equation (6-141).

Scr1=0.00045721gρbhbr1dmN2=0.0004572×0.332.2×2.145×29.1×(7000)2=13050psi\begin{aligned} S_{\mathrm{cr} 1} & =0.0004572 \frac{1}{g} \rho_{b} h_{b r 1} d_{m} N^{2} \\ & =0.0004572 \times \frac{0.3}{32.2} \times 2.145 \times 29.1 \times(7000)^{2} \\ & =13050 \mathrm{psi} \end{aligned}

Stator Blade Dimensions

Pitch or blade spacing

Pbs= Blade chord length Cb Blade solidity =1.41.94=0.721inP_{\mathrm{bs}}=\frac{\text { Blade chord length } C_{b}}{\text { Blade solidity }}=\frac{1.4}{1.94}=0.721 \mathrm{in}

From equation (6-140a), the number of blades

zbs=πdmPbs=π×29.10.721=127z_{\mathrm{bs}}=\frac{\pi d_{m}}{P_{\mathrm{bs}}}=\frac{\pi \times 29.1}{0.721}=127

Allowing 2242^{\circ} 24^{\prime} between inlet blade angle θb1S\theta_{b_{1 S}} and inlet absolute flow angle a2a_{2}

θb1S=a2+224=3436+224=37\theta_{b_{1 S}}=a_{2}+2^{\circ} 24^{\prime}=34^{\circ} 36^{\prime}+2^{\circ} 24^{\prime}=37^{\circ}

We hold exit blade angle θb2s\theta_{b_{2} s} equal to exit absolute flow angle a3a_{3} :

θb2S=a3=35\theta_{b_{2 S}}=a_{3}=35^{\circ}

From equation (6-149), blade radial height at the inlet

hb1s=1.08×2.52=2.72inh_{b_{1 s}}=1.08 \times 2.52=2.72 \mathrm{in}

The blade passage width at the inlet

bb1 s=Pbssinθb1 stb=0.721×0.6020.05=0.384in\begin{aligned} b_{b_{1 \mathrm{~s}}} & =P_{\mathrm{bs}} \sin \theta_{b_{1 \mathrm{~s}}}-t_{b}=0.721 \times 0.602-0.05 \\ & =0.384 \mathrm{in} \end{aligned}

Using equation (6-138), we obtain the required total blade exit area

Ab2S=144w˙tρ3C3ϵb2=144×920.0544×1938×0.95=132.5in2A_{b_{2 S}}=\frac{144 \dot{w}_{t}}{\rho_{3} C_{3} \epsilon_{b_{2}}}=\frac{144 \times 92}{0.0544 \times 1938 \times 0.95}=132.5 \mathrm{in}^{2}

Combining equations (6-139) and (6-140a), we calculate the blade radial height at the exit

hb2s=Ab2sπdmsinθb2szbstb=132.5π×29.1×0.574127×0.05=2.87in\begin{aligned} h_{b_{2} s} & =\frac{A_{b_{2} s}}{\pi d_{m} \sin \theta_{b_{2} s}-z_{\mathrm{bs}} t_{b}} \\ & =\frac{132.5}{\pi \times 29.1 \times 0.574-127 \times 0.05}=2.87 \mathrm{in} \end{aligned}

The blade passage width at the exit

bb2S=Pbs×sinθb2Stb=0.721×0.5740.05=0.364in\begin{aligned} b_{b_{2 S}} & =P_{\mathrm{bs}} \times \sin \theta_{b_{2 S}}-t_{b}=0.721 \times 0.574-0.05 \\ & =0.364 \mathrm{in} \end{aligned}

Second Rotor Blade Dimensions Pitch or blade spacing

Pbr2= Blade chord length Cb Blade solidity =1.41.67=0.838inP_{b r_{2}}=\frac{\text { Blade chord length } C_{b}}{\text { Blade solidity }}=\frac{1.4}{1.67}=0.838 \mathrm{in}

From equation (6-140a), the number of the blades

zbr2=πdmPbr2=π×29.10.838=109z_{b r 2}=\frac{\pi d_{m}}{P_{b r 2}}=\frac{\pi \times 29.1}{0.838}=109

Allow 242^{\circ} 4^{\prime} between the inlet blade angle θb1r2\theta_{b_{1} r_{2}} and the inlet relative flow angle β3\beta_{3}; thus

θb1r2=β3+24=5756+24=60\theta_{b_{1} r_{2}}=\beta_{3}+2^{\circ} 4^{\prime}=57^{\circ} 56^{\prime}+2^{\circ} 4^{\prime}=60^{\circ}

We make the exit blade angle θb212\theta_{b_{212}} equal to the exit relative flow angle β4\beta_{4}

θb2r2=β4=44\theta_{b_{2} r 2}=\beta_{4}=44^{\circ}

From equation (6-149), the blade radial height at the inlet is

hb1T2=1.08×2.87=3.10inh_{b_{1 T 2}}=1.08 \times 2.87=3.10 \mathrm{in}

The blade passage width at the inlet

bb1T2=Pb12sinθb1r2tb=0.838×0.8660.05=0.677in\begin{aligned} b_{b_{1} T_{2}} & =P_{b_{12}} \sin \theta_{b_{1} r_{2}}-t_{b}=0.838 \times 0.866-0.05 \\ & =0.677 \mathrm{in} \end{aligned}

From equation (6-138), the required total blade exit area

Ab2r2=144w˙tρ4V4ϵb2=144×920.0506×1306×0.95=211in2A_{b_{2} r_{2}}=\frac{144 \dot{w}_{t}}{\rho_{4} V_{4} \epsilon_{b 2}}=\frac{144 \times 92}{0.0506 \times 1306 \times 0.95}=211 \mathrm{in}^{2}

Combining equations (1-139) and (1-140a), we obtain the blade radial height at the exit

hb2r2=Ab2r2πdmsinθb2r2zbtb=211π×29.1×0.695119×0.05=3.66in\begin{aligned} h_{b_{2} r_{2}} & =\frac{A_{b_{2} r_{2}}}{\pi d_{m} \sin \theta_{b_{2} r_{2}}-z_{b} t_{b}} \\ & =\frac{211}{\pi \times 29.1 \times 0.695-119 \times 0.05}=3.66 \mathrm{in} \end{aligned}

The blade exit passage width

bb2I2=Pbr2sinθb2Itb=0.838×0.6950.05=0.533in\begin{aligned} b_{b_{2 I 2}} & =P_{b r_{2}} \sin \theta_{b_{2 I}}-t_{b}=0.838 \times 0.695-0.05 \\ & =0.533 \mathrm{in} \end{aligned}

The mean blade radial height

hbr2=3.10+3.662=3.38inh_{b r_{2}}=\frac{3.10+3.66}{2}=3.38 \mathrm{in}

Check the centrifugal tensile stress at the root section using equation (6-141)

Scr2=0.00045721gρbhbr2dmN2=0.0004572×0.332.2×3.38×29.1×(7000)2=20550psi\begin{aligned} S_{\mathrm{cr} 2} & =0.0004572 \frac{1}{g} \rho_{b} h_{\mathrm{br} 2} d_{m} N^{2} \\ & =0.0004572 \times \frac{0.3}{32.2} \times 3.38 \times 29.1 \times(7000)^{2} \\ & =20550 \mathrm{psi} \end{aligned}

Turbine Efficiencies

From equations (6-146) and (6-147), the combined nozzle and blade efficiency

ηnb=U(C1cosa1+C2cosa2+C3cosa3+C4cosa4)gJΔH=890(3940×0.906+2080×0.817+1938×0.819+908×0.055)32.2×778×359=0.683\begin{aligned} \eta_{\mathrm{nb}} & =\frac{\begin{array}{c} U\left(C_{1} \cos a_{1}+C_{2} \cos a_{2}\right. \\ \left.+C_{3} \cos a_{3}+C_{4} \cos a_{4}\right) \end{array}}{g J \Delta H} \\ & =\frac{\begin{array}{c} 890(3940 \times 0.906+2080 \times 0.817 \\ +1938 \times 0.819+908 \times 0.055) \end{array}}{32.2 \times 778 \times 359} \\ & =0.683 \end{aligned}

From equation (6-148), the turbine machine efficiency

ηm=ηtηnb=0.5820.683=0.852\eta_{m}=\frac{\eta_{t}}{\eta_{\mathrm{nb}}}=\frac{0.582}{0.683}=0.852

A-1 Stage Engine Turbine (Single-Stage, TwoRotor, Velocity-Compounded Impulse Type) Design Summary
For velocity diagrams at mean diameter dmd_{m},

see figure 6-58.

U=890:α1=25;β1=3153;C1=3940fps;V1=3156fps;α2=3515;β2=25;C2=2080fps;V2=2866fps;α3=35;β3=5756;C3=1938fps;V3=1312fps;α4=8655;β4=44;C4=908fps;V4=1306fps\begin{aligned} & U=890: \\ & \alpha_{1}=25^{\circ} ; \beta_{1}=31^{\circ} 53^{\prime} ; C_{1}=3940 \mathrm{fps} ; V_{1} \\ & =3156 \mathrm{fps} ; \alpha_{2}=35^{\circ} 15^{\prime} ; \beta_{2}=25^{\circ} ; C_{2}=2080 \\ & \mathrm{fps} ; V_{2}=2866 \mathrm{fps} ; \alpha_{3}=35^{\circ} ; \beta_{3}=57^{\circ} 56^{\prime} ; \\ & C_{3}=1938 \mathrm{fps} ; V_{3}=1312 \mathrm{fps} ; \alpha_{4}=86^{\circ} 55^{\prime} ; \\ & \beta_{4}=44^{\circ} ; C_{4}=908 \mathrm{fps} ; V_{4}=1306 \mathrm{fps} \end{aligned}

Isentropic enthalpy drops:

 Nozzles, ΔH01=337.5Btu/lb\text { Nozzles, } \Delta H_{0-1^{\prime}}=337.5 \mathrm{Btu} / \mathrm{lb}

First rotor blades, ΔH12=7.18Btu/lb\Delta H_{1-2^{\prime}}=7.18 \mathrm{Btu} / \mathrm{lb} Stator blades, ΔH23=7.18Btu/lb\Delta H_{2-3^{\prime}}=7.18 \mathrm{Btu} / \mathrm{lb} Second rotor, ΔH34=7.18Btu/lb\Delta H_{3-4^{\prime}}=7.18 \mathrm{Btu} / \mathrm{lb}

 Total ΔH=359Btu/lb\text { Total } \Delta H=359 \mathrm{Btu} / \mathrm{lb}

Working efficiencies:

ηt=58.2%;ηn=92%;ηnb=68.3%;ηm=85.2%\eta_{t}=58.2 \% ; \eta_{n}=92 \% ; \eta_{\mathrm{nb}}=68.3 \% ; \eta_{m}=85.2 \%

Mean diameter of nozzles and blades:

dm=29.1ind_{m}=29.1 \mathrm{in}

Nozzle dimensions (at dmd_{m} ):

 Aspect ratio =9.7;zn=57;Pn=1.604in;θn=23;hnt=1.5in;ane=1.64in;bnt=0.1548in;bne=0.576in\begin{aligned} & \text { Aspect ratio }=9.7 ; z_{n}=57 ; P_{n}=1.604 \mathrm{in} ; \\ & \theta_{n}=23^{\circ} ; h_{\mathrm{nt}}=1.5 \mathrm{in} ; a_{\mathrm{ne}}=1.64 \mathrm{in} ; b_{\mathrm{nt}} \\ & =0.1548 \mathrm{in} ; b_{\mathrm{ne}}=0.576 \mathrm{in} \end{aligned}

First rotor blade dimensions (at dmd_{m} ):

 Solidity =1.82;Cb=1.4in;zbr1=119;Pbr1=0.769in;θb1r1=34;θb2r1=25;hb1r1=1.77in;hb2r1=2.52in;bb1r1=0.379 in; bb2r1=0.291in\begin{aligned} & \text { Solidity }=1.82 ; C_{b}=1.4 \mathrm{in} ; z_{b r_{1}}=119 ; \\ & P_{b r_{1}}=0.769 \mathrm{in} ; \theta_{b_{1 r 1}}=34^{\circ} ; \theta_{b_{2 r 1}}=25^{\circ} ; \\ & h_{b_{1 r 1}}=1.77 \mathrm{in} ; h_{b_{2 r 1}}=2.52 \mathrm{in} ; b_{b_{1 r 1}}=0.379 \\ & \text { in; } b_{b_{2 r 1}}=0.291 \mathrm{in} \end{aligned}

Stator blade dimensions (at dmd_{m} ):

 Solidity =1.94;Cb=1.4in;zbs=1.27Pbs=0.721in;θb1s=37;θb2s=35hb1s=2.72in;hb2s=2.87in;bb1s=0.384 in; bb2s=0.364in\begin{aligned} & \text { Solidity }=1.94 ; C_{b}=1.4 \mathrm{in} ; z_{b s}=1.27 \\ & P_{b s}=0.721 \mathrm{in} ; \theta_{b_{1 s}}=37^{\circ} ; \theta_{b_{2 s}}=35^{\circ} \\ & h_{b_{1 s}}=2.72 \mathrm{in} ; h_{b_{2 s}}=2.87 \mathrm{in} ; b_{b_{1 s}}=0.384 \\ & \text { in; } b_{b_{2 s}}=0.364 \mathrm{in} \end{aligned}

Second rotor blade dimensions (at dmd_{m} ):

 Solidity =1.67;Cb=1.4in;zbr2=109;Pbr2=0.838in;θb1r2=60;θb2r2=44hb1r2=3.10in;hb2b2=3.66in;bb1r2=0.677 in; bb2r2=0.533in\begin{aligned} & \text { Solidity }=1.67 ; C_{b}=1.4 \mathrm{in} ; z_{b r_{2}}=109 ; \\ & P_{b r_{2}}=0.838 \mathrm{in} ; \theta_{b_{1} r_{2}}=60^{\circ} ; \theta_{b_{2} r_{2}}=44^{\circ} \\ & h_{b_{1} r_{2}}=3.10 \mathrm{in} ; h_{b_{2} b_{2}}=3.66 \mathrm{in} ; b_{b_{1} r_{2}}=0.677 \\ & \text { in; } b_{b_{2} r_{2}}=0.533 \mathrm{in} \end{aligned}

(b) Two-stage, two-rotor, equal-work, pressurecompounded impulse turbine. (For velocity diagrams, see fig. 6-59.)

From prior trial-and-error calculations, the following isentropic enthalpy drops resulting in (approximately) equal work for each stage were obtained. We assume a stage carryover ratio rc=0.91\mathrm{r}_{c}=0.91.

First-stage nozzles:

ΔH011=50%;ΔH=0.5×359=179.5Btu/lb\Delta H_{0-1^{1}}=50 \% ; \quad \Delta H=0.5 \times 359=179.5 \mathrm{Btu} / \mathrm{lb}

First-stage rotor blades:

ΔH12=3%;ΔH=0.03×359=10.75Btu/lb\Delta H_{1-2^{\prime}}=3 \% ; \quad \Delta H=0.03 \times 359=10.75 \mathrm{Btu} / \mathrm{lb}

Second-stage nozzles:

ΔH23=44%;ΔH=0.44×359=158Btu/lb\Delta H_{2-3^{\prime}}=44 \% ; \quad \Delta H=0.44 \times 359=158 \mathrm{Btu} / \mathrm{lb}

Second-stage rotor blades:

ΔH34=3%;ΔH=0.03×359=10.75Btu/lb\Delta H_{3-4^{\prime}}=3 \% ; \quad \Delta H=0.03 \times 359=10.75 \mathrm{Btu} / \mathrm{lb}

Point "0"-First-Stage Nozzle Inlet T0=1860RT_{0}=1860^{\circ} \mathrm{R} p0=640psiap_{0}=640 \mathrm{psia}

Point "1"-First-Stage Nozzle Exit=Rotor Blade Inlet

From equation (6-121), the gas-spouting velocity at the first-stage nozzle exit

C1=kn2gJΔH01=0.96×223.8×179.5=2880fps\begin{aligned} C_{1} & =k_{n} \sqrt{2 g J \Delta H_{0-1^{\prime}}}=0.96 \times 223.8 \times \sqrt{179.5} \\ & =2880 \mathrm{fps} \end{aligned}

We use a value of 2525^{\circ} for the spouting-gas flow angle a1a_{1}. For optimum efficiency, the peripheral speed at the rotor mean diameter

U=cosa1C12=0.906×28802=1308fpsU=\frac{\cos a_{1} C_{1}}{2}=\frac{0.906 \times 2880}{2}=1308 \mathrm{fps}

Using equation (6-130), the relative gas flow β1\beta_{1} at the first-stage rotor blade inlet can be calculated as tanβ1=C1sinα1C1cosα1U=2880×0.4232880×0.9061308=0.936\tan \beta_{1}=\frac{C_{1} \sin \alpha_{1}}{C_{1} \cos \alpha_{1}-U}=\frac{2880 \times 0.423}{2880 \times 0.906-1308}=0.936

β1=438\beta_{1}=43^{\circ} 8^{\prime}

The relative gas flow velocity at first-stage rotor blade inlet

V1=C1sina1sinβ1=2880×0.4230.683=1784fpsV_{1}=\frac{C_{1} \sin a_{1}}{\sin \beta_{1}}=\frac{2880 \times 0.423}{0.683}=1784 \mathrm{fps}

Point "2"-First-Stage Rotor Blade Exit=SecondStage Nozzle Inlet

From equation (6-135), the relative gas flow velocity at the first-stage rotor blade exit

V2=kb2V12+2gJηnΔH12=(0.89×1784)2+64.4×778×0.92×10.75=1736fps\begin{aligned} V_{2} & =\sqrt{k_{b}^{2} V_{1}^{2}+2 g J \eta_{n} \Delta H_{1-2^{\prime}}} \\ & =\sqrt{(0.89 \times 1784)^{2}+64.4 \times 778 \times 0.92 \times 10.75} \\ & =1736 \mathrm{fps} \end{aligned}

We chose a relative exit gas flow angle β2=38\beta_{2}=38^{\circ} for the first-stage rotor blades. The absolute gas flow angle, a2a_{2}, can then be calculated as tanα2=V2sinβ2V2cosβ2U=1736×0.6161736×0.7881308=17.25\tan \alpha_{2}=\frac{V_{2} \sin \beta_{2}}{V_{2} \cos \beta_{2}-U}=\frac{1736 \times 0.616}{1736 \times 0.788-1308}=17.25

a2=8640a_{2}=86^{\circ} 40^{\prime}

The absolute gas flow velocity at the firststage rotor blade exits

C2=V2sinβ2sina2=1736×0.6160.998=1070fpsC_{2}=\frac{V_{2} \sin \beta_{2}}{\sin a_{2}}=\frac{1736 \times 0.616}{0.998}=1070 \mathrm{fps}

Point "3"-Second-Stage Nozzle Exit == Second

Rotor Blade Inlet

From equation (6-151), the second-stage nozzle gas-spouting velocity

C3=knrcC22+2gJΔH23=0.960.91×(1070)2+64.4×778×158=2880fps\begin{aligned} C_{3} & =k_{n} \sqrt{r_{c} C_{2}^{2}+2 g J \Delta H_{2-3^{\prime}}} \\ & =0.96 \sqrt{0.91 \times(1070)^{2}+64.4 \times 778 \times 158} \\ & =2880 \mathrm{fps} \end{aligned}

Since C3=C1C_{3}=C_{1}, the remainder of the secondstage velocity diagram is the same as that of the first stage, i.e., a3=a1=25;β3=β1=438a_{3}=a_{1}=25^{\circ} ; \beta_{3}=\beta_{1}=43^{\circ} 8^{\prime}; V3=V1=1784fps;a4=a2=8640;β4=β2=38V_{3}=V_{1}=1784 \mathrm{fps} ; a_{4}=a_{2}=86^{\circ} 40^{\prime} ; \beta_{4}=\beta_{2}=38^{\circ}; C4=C2=1070fps;V4=V2=1736fpsC_{4}=C_{2}=1070 \mathrm{fps} ; V_{4}=V_{2}=1736 \mathrm{fps}.

From equation (6-129), the turbine rotor mean diameter

dm=720UπN=720×1308π×7000=42.7ind_{m}=\frac{720 U}{\pi N}=\frac{720 \times 1308}{\pi \times 7000}=42.7 \mathrm{in}

From equation (6-147), the combined nozzle and blade efficiency

ηnb=U(C1cosa1+C2cosa2+C3cosa3+C4cosa4)=1308(2880×0.906+1070×0.058+2880×0.906+1070×0.058)=0.78\begin{aligned} \eta_{\mathrm{nb}} & =\frac{U\left(C_{1} \cos a_{1}+C_{2} \cos a_{2}\right.}{\left.+C_{3} \cos a_{3}+C_{4} \cos a_{4}\right)} \\ & =\frac{1308(2880 \times 0.906+1070 \times 0.058}{+2880 \times 0.906+1070 \times 0.058)} \\ & =0.78 \end{aligned}

The turbine machine efficiency is assumed to be the same as that used in design (a):

ηm=0.852\eta_{m}=0.852

From equation (6-148), the overall turbine efficiency

ηt=ηnbηm=0.78×0.852=0.664\eta_{t}=\eta_{\mathrm{nb}} \eta_{m}=0.78 \times 0.852=0.664

A-1 Stage Engine Alternate Turbine Design Summary (Two-Stage, Two-Rotor, PressureCompounded, Impulse Type)

For velocity diagrams at mean diameter dmd_{m}, see figure 6-59.

U=1308fps:a1=25;β1=438;C1=2880fps;V1=1784fps;a2=8640;β2=38;C2=1070fps;V2=1736fps;a3=25;β3=438;C3=2880fps;V3=1784fps;a4=8640;β4=38;C4=1070fps;V4=1736fps\begin{aligned} & U=1308 \mathrm{fps}: \\ & a_{1}=25^{\circ} ; \beta_{1}=43^{\circ} 8^{\prime} ; C_{1}=2880 \mathrm{fps} ; V_{1}=1784 \\ & \mathrm{fps} ; a_{2}=86^{\circ} 40^{\prime} ; \beta_{2}=38^{\circ} ; C_{2}=1070 \mathrm{fps} ; \\ & V_{2}=1736 \mathrm{fps} ; a_{3}=25^{\circ} ; \beta_{3}=43^{\circ} 8^{\prime} ; C_{3}=2880 \\ & \mathrm{fps} ; V_{3}=1784 \mathrm{fps} ; a_{4}=86^{\circ} 40^{\prime} ; \beta_{4}=38^{\circ} ; \\ & C_{4}=1070 \mathrm{fps} ; V_{4}=1736 \mathrm{fps} \end{aligned}

Isentropic enthalpy drops: First-stage nozzles, ΔH01=179.5Btu/lb\Delta H_{0-1^{\prime}}=179.5 \mathrm{Btu} / \mathrm{lb} First-stage rotor blades, ΔH12=10.75Btu/lb\Delta H_{1-2^{\prime}}=10.75 \mathrm{Btu} / \mathrm{lb} Second-stage nozzles, ΔH23=158Btu/lb\Delta H_{2-3^{\prime}}=158 \mathrm{Btu} / \mathrm{lb} Second-stage rotor blades, ΔH34=10.75\Delta H_{3-4^{\prime}}=10.75 Btu/lb Working efficiencies:

ηt=66.4%;ηn=92%;ηnb=78%;ηm=85.2%\eta_{t}=66.4 \% ; \eta_{n}=92 \% ; \eta_{\mathrm{nb}}=78 \% ; \eta_{m}=85.2 \%

Mean diameter of nozzles and blades:

dm=42.7ind_{m}=42.7 \mathrm{in}

Comment: The overall efficiency of the pressure compounded turbine is higher than that of design (a). However, a relatively large dmd_{m} is required (weight, size).